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HermiteFit, a novel algorithm for fitting a protein structure

into a low-resolution electron-density map, is presented. The

algorithm accelerates the rotation of the Fourier image of

the electron density by using three-dimensional orthogonal

Hermite functions. As part of the new method, an algorithm

for the rotation of the density in the Hermite basis and an

algorithm for the conversion of the expansion coefficients into

the Fourier basis are presented. HermiteFit was implemented

using the cross-correlation or the Laplacian-filtered cross-

correlation as the fitting criterion. It is demonstrated that in

the Hermite basis the Laplacian filter has a particularly simple

form. To assess the quality of density encoding in the Hermite

basis, an analytical way of computing the crystallographic R

factor is presented. Finally, the algorithm is validated using

two examples and its efficiency is compared with two widely

used fitting methods, ADP_EM and colores from the Situs

package. HermiteFit will be made available at http://

nano-d.inrialpes.fr/software/HermiteFit or upon request from

the authors.
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1. Introduction

An important class of algorithms in computer science deals

with the exhaustive search in six-dimensional space of trans-

lations and rotations of a rigid body. These algorithms are

used, for example, in crystallography for molecular replace-

ment and in computational biology to perform ligand docking,

to predict protein–protein interactions and to discover the

structures of macromolecular assemblies.

Modern exhaustive search algorithms implement either a

fast three-dimensional translational search using the fast

Fourier transform (FFT; Chacón & Wriggers, 2002; Katchalski-

Katzir et al., 1992; Gabb et al., 1997; Wriggers, 2010; Siebert &

Navaza, 2009) or a fast three-dimensional rotational search

by means of spherical harmonics decomposition and the FFT

(Kovacs & Wriggers, 2002; Crowther, 1972), or even a fast five-

dimensional rotational search (Kovacs et al., 2003; Ritchie

et al., 2008). An exhaustive search is also widely used as a

preliminary step preceding local search or flexible refinement

procedures. Thus, the quality and the speed of exhaustive

search algorithms have a great impact on the solution of a vast

variety of problems. Therefore, we believe that new directions

of research on this topic are very important and highly valu-

able.

In this paper, we present the new HermiteFit algorithm

that uses orthogonal Hermite functions to perform an

exhaustive search in the six-dimensional space of rigid-body

motions. We apply this method to the problem of fitting of a
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high-resolution X-ray structure of a protein subunit into the

cryo-electron microscopy (cryo-EM) density map of a protein

complex. As part of this new method, we developed an algo-

rithm for the rotation of the decomposition in the Hermite

basis and another algorithm for the conversion of the Hermite

expansion coefficients into the Fourier basis.

The choice of the application of our algorithm is dictated by

the fact that currently the major source of information on the

mechanisms of function of proteins and their assemblies are

the atomic structures obtained by X-ray crystallography.

However, as the size of the protein grows, as often happens in

protein complexes, it becomes more difficult to obtain well

ordered crystals that are sufficiently large for X-ray experi-

ments. Hopefully, in many cases, different parts of the protein

complex can be crystallized separately. Usually, their struc-

tures can be solved to atomic resolution. The whole protein

complex in this case can be probed by cryo-EM (Cheng &

Walz, 2009), by small-angle X-ray scattering (Svergun & Koch,

2003) and with recent advances in femtosecond X-ray lasers

(Chapman et al., 2011). Usually, these techniques provide of an

electron-density map (EDM) of a large protein or a protein

complex with a resolution lower than 3.5 Å, whereas the

atomic structures of its small subunits can be solved with X-ray

crystallography at even sub-angstrom resolution. To recon-

struct large proteins or protein complexes at high resolution,

the high-resolution crystallographic structures of small units

can be fitted into the low-resolution structures of the whole

assembly. A number of software packages have been devel-

oped for this task. The most notable of them are Situs

(Wriggers, 2010; Chacón & Wriggers, 2002), NORMA (Suhre

et al., 2006), EMFit (Rossmann et al., 2001) and UROX

(Siebert & Navaza, 2009). Despite the differences in their

implementation, all of the algorithms maximize some score

that shows the goodness of the fitting using a certain optimi-

zation algorithm. An excellent review of the different types of

scoring functions used for cryo-EM density fitting is given by

Vasishtan & Topf (2011). According to them, one of the most

popular scoring functions is the cross-correlation function

(CCF) between the EDM and the density of the fitted protein.

Given a protein structure that is described by its electron

density f(r), and an EDM obtained from, for example, a cryo-

EM experiment described by the function g(r), we can mini-

mize the square-root discrepancy between them. Precisely, this

discrepancy is given by

S ¼
R
½T̂TR̂Rf ðrÞ � gðrÞ�2 dr; ð1Þ

where T̂T and R̂R are the operators of the translation and the

rotation, respectively, applied to the density f(r). We can

rewrite the scoring function S as

S ¼
R
½T̂TR̂Rf ðrÞ�2 drþ

R
g2ðrÞ dr� 2

R
T̂TR̂Rf ðrÞgðrÞ dr: ð2Þ

Therefore, minimization of the score S is equivalent to maxi-

mization of the CCF,

CCF ¼
R

T̂TR̂Rf ðrÞgðrÞ dr; ð3Þ

with respect to the parameters of the operators T̂T and R̂R. This

scoring function has been used in the majority of the algo-

rithms and software packages that perform fitting to the EDM

(Wriggers, 2010; Siebert & Navaza, 2009; Suhre et al., 2006).

Another widely used scoring function is the Laplacian-

filtered cross-correlation function (LCCF). It originated from

the observation that a human performing a manual fitting of a

structure into an EDM tends to match the isosurfaces of the

densities rather than the densities themselves,

LCCF ¼
R
½�T̂TR̂Rf ðrÞ�½�gðrÞ� dr: ð4Þ

This scoring function works better than the CCF for low-

resolution maps (�10–30 Å; Wriggers, 2010) and was used

for the first time in the CoAn/CoFi algorithm (Volkmann &

Hanein, 1999). Other scoring functions that, for example,

penalize symmetry-induced protein–protein contacts, or make

use of protein–protein docking potentials etc., have also been

developed (Vasishtan & Topf, 2011). In our work, we use the

CCF and LCCF to determine the goodness of fit.

In this paper, we demonstrate the ability of our algorithm

to compete with the well established approaches by using two

examples of different difficulty: the PniB conotoxin peptide

and the GroEL complex. The first example illustrates the

encoding principles and demonstrates the influence of the

encoding quality on the goodness of fit. The second example

is the gold standard of all electron-density map-fitting algo-

rithms. Our approach allows analytical assessment of the

quality of encoding of the Hermite basis using an estimation of

the crystallographic R factor. We then compare this estimation

with that computed numerically for the PniB conotoxin

density map. Finally, we compare the speed and the fitting

accuracy of our algorithm with two popular programs, the

ADP_EM fitting method and the colores program from the

Situs package, and demonstrate that HermiteFit takes less

running time per search point compared with the two other

methods while attaining a similar accuracy.

The HermitFit algorithm can be straightforwardly applied to

a broad class of problems in different fields of research. For

example, one of the bottlenecks of algorithms for molecular

replacement in crystallography is the computation of the

Fourier coefficients (structure factors) of a molecule (Navaza

& Vernoslova, 1995). This operation needs to be precise and

fast. However, exact analytical evaluation of the structure

factors is too costly (Sayre, 1951) when recomputing them for

each rotation of the molecule. Therefore, currently one uses

the Sayre–Ten Eyck approach to compute the Fourier coeffi-

cients (Ten Eyck, 1977). Unfortunately, one has to be very

careful tuning the parameters of the electron-density model

and the grid cell size to obtain the desired precision (Navaza,

2002; Afonine & Urzhumtsev, 2004). Unlike the Sayre–Ten

Eyck approach, our algorithm offers an analytical expression

for the structure factors of the Hermite decomposition of a

molecule. Finally, our approach allows analytical estimatation

of the quality of encoding using, for example, crystallographic

R factors.
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2. Methods

2.1. Summary of the standard fitting algorithm

The standard FFT-based three-dimensional fitting algo-

rithm operates according to the workflow shown in Fig. 1

(Katchalski-Katzir et al., 1992; Gabb et al., 1997; Chacón &

Wriggers, 2002). The input of this algorithm is a protein atomic

structure determined experimentally by, for example, X-ray

crystallography or nuclear magnetic resonance (NMR)

experiments. Another input is an experimental EDM deter-

mined by means of, for example, cryo-EM. Firstly, the algo-

rithm decomposes the experimental EDM into the Fourier

basis using the fast Fourier transform algorithm. It then

rotates the protein structure to a certain orientation r and

decomposes the electron density of the rotated structure into

the Fourier basis. The electron density is typically computed as

a sum of Gaussians centred on non-H atoms of the protein.

Afterwards, the algorithm exhaustively explores translational

degrees of freedom of the rotated protein with respect to the

EDM. For every translation t, it determines the corresponding

score, which is usually given by the correlation between the

two densities. This procedure is equivalent to computing the

convolution of two functions,

CCFðr; tÞ ¼
R

f ðr; x� tÞgðxÞ dx; ð5Þ

where f(r, x � t) is the density of the protein rotated by r and

translated by t and g(x) is the experimental electron-density

map. To speed up this step, the algorithm computes the values

of the Fourier transform of the CCF for all translational

degrees of freedom at once using the convolution theorem.

Finally, the algorithm computes the inverse Fourier transform

(IFT) of the convolution, generates a new rotation of the

protein structure and returns to the second step. This proce-

dure is repeated until all rotational degrees of freedom of the

protein with respect to the EDM have been explored (see

Fig. 1). The solution of the fitting problem is then given by

(rmax, tmax) = argmaxr,t[CCF(r, t)].

The bottleneck of the standard algorithm is the re-projec-

tion of the protein electron density into the Fourier space after

each rotation. To overcome this, we propose encoding the

electron density of the protein structure in the orthogonal

Hermite basis prior to performing the rotational search. This

allows the projection of the protein density into the Fourier

space to be sped up. Since only members of the Fourier family

of linear transforms can replace the O(N2) operations of a

convolution in a time domain by O(N) operations in a

frequency domain (Stone, 1998), we still need to perform the

convolution in the Fourier space. Fig. 2 shows the workflow of

the proposed algorithm. The computational complexity of this

algorithm is listed in Table 1.
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Table 1
Complexity of the Hermite fitting algorithm.

Here, M denotes the order of the Fourier decomposition, N is the order of the
Hermite decomposition, Natom is the number of atoms in the protein and Nrot

is the number of rotations to be sampled.

Operation Complexity
Loop
multiplier

Decomposition of the step function O(M3logM3) 1
Decomposition of the Gaussian O(NatomsN

3) 1
Construction of the rotation matrix O(NrotN

4) 1
Rotation O(N4) Nrot

Evaluation of the Hermite series O(M3N + M2N2 + MN3) Nrot

Multiplication O(M3) Nrot

Inverse Fourier transform O(M3logM3) Nrot

Figure 2
Flowchart of HermiteFit, the new fitting algorithm based on Hermite expansions. Green blocks correspond to operations in Fourier space. Blue blocks
correspond to operations in Hermite space.

Figure 1
Flowchart of the standard fitting algorithm based on Fourier correlations. Green blocks correspond to operations in Fourier space.



2.2. Hermite functions

The orthogonal Hermite function of order n is defined as

 nðx; �Þ ¼
�1=2

ð2nn!�1=2Þ
1=2

exp �
�2x2

2

� �
Hnð�xÞ; ð6Þ

where Hn(x) is the Hermite polynomial and � is the scaling

parameter. In Fig. 3 we show several orthogonal Hermite

functions of different orders with different parameters �.

These functions form an orthonormal basis set in L2ðRÞ. A

one-dimensional function f(x) decomposed into the set of

one-dimensional Hermite functions up to order N is given by

f ðxÞ ¼
PN
i¼0

f̂fi iðx; �Þ: ð7Þ

Here, f̂fi are the decomposition coefficients, which can be

determined from the orthogonality of the basis functions  i(x;

�). Decomposition of (7) is called band-limited decomposition

with  i(x; �) basis functions. To decompose the EDM and the

protein structures, we employ the three-dimensional Hermite

functions

 n;l;mðx; y; z; �Þ ¼  nðx; �Þ lðy; �Þ mðz; �Þ; ð8Þ

which form an orthonormal basis set in L2ðR
3
Þ. A function

f(x, y, z) represented as a band-limited expansion in this basis

is given by

f ðx; y; zÞ ¼
PN
i¼0

PN�i

j¼0

PN�i�j

k¼0

f̂fi;j;k i;j;kðx; y; z; �Þ: ð9Þ

2.3. Decomposition of electron densities into the orthogonal
Hermite basis

One of the advantages of the orthogonal Hermite basis is

that we can derive the exact analytical expression for the

decomposition coefficients of a molecular structure. This

allows the exact decompositions to rapidly be obtained

without costly numerical integration over three-dimensional

space. In our algorithm, the electron density of the protein

[f(x) in equation 5, upon which rotation and translation

operators act] is expanded in the Hermite basis using the

Gaussian model. More precisely, we model the electron

density of a single atom in the molecular structure as a

Gaussian centred at the atomic position r
ðiÞ
0 with the squared

variance equal to �2/2. The electron density of the whole

molecular structure is then given by the following sum,

MðrÞ ¼
PNatoms

i¼1

exp½�jr� r
ðiÞ
0 j

2=�2�; ð10Þ

where r
ðiÞ
0 is the position of the ith atom, �/21/2 is the variance

of the Gaussian distribution and r ¼ ðx; y; zÞ 2 R3 is the

sampling volume. Normally, each Gaussian should be

weighted with a coefficient corresponding to the electron

distribution of a particular atom. However, we omit the

weights in our approximation. In Appendix A, we provide

analytical expressions (equations 48 and 54) for the decom-

position coefficients of M(r) in the one-dimensional and the

three-dimensional cases.

2.4. Laplacian filter in the Hermite basis

For medium- to low-resolution maps the Laplacian-filtered

cross-correlation function gives a better match compared with

the CCF (Wriggers, 2010). In the Hermite basis, the Laplacian

filter has a particularly simple form. Using the well known

recurrence relation for the derivatives of Hermite functions,

we can easily derive the following relation for the second

derivative of a one-dimensional basis function:

d2

dx2
 nðx; �Þ ¼

�2

2
f½nðn� 1Þ�1=2 n�2ðx; �Þ þ ð2nþ 1Þ nðx; �Þ

þ ½ðnþ 1Þðnþ 2Þ�1=2 nþ2ðx; �Þg: ð11Þ

A similar relationship holds for the coefficients of the

decomposition:
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Figure 3
Left, one-dimensional Hermite functions of order six for three different scaling parameters �. Right, one-dimensional Hermite functions of two different
orders for the scaling parameter � = 1.



ĥh
00

n ¼
�2

2
f½nðn� 1Þ�1=2ĥhn�2 þ ð2nþ 1Þĥhn

þ ½ðnþ 2Þðnþ 1Þ�1=2ĥhnþ2g; ð12Þ

where ĥhn and ĥh00n are the nth-order decomposition coefficients

of the original basis and its Laplacian representation,

respectively. For n < 0 and n > N we let ĥhn = 0 and ĥh00n = 0.

Owing to the properties of the Laplace operator and the

three-dimensional Hermite decomposition, the contributions

of the derivatives along each axis are additive. The derivation

of the formula for the three-dimensional decomposition

derivative is straightforward and we omit it for brevity.

2.5. Rotation of the Hermite decomposition

Recently, Park et al. (2009) presented a method to perform

an in-plane rotation of a two-dimensional orthogonal Hermite

band-limited decomposition. Here, we extend their method to

the three-dimensional case. Let us first consider the decom-

position of a two-dimensional function into a two-dimensional

orthogonal Hermite-function basis,

f ðx; yÞ ¼
PN
n¼0

PN�m

m¼0

f̂fn;m nðx; �Þ mðy; �Þ: ð13Þ

The decomposition of a function f �(x, y) rotated clockwise by

an angle � is given by

f �ðx; yÞ ¼
PN
m¼0

Pm
k¼0

Pm
n¼0

f̂fn;m�nSm
k;n

� �
 kðx; �Þ m�kðy; �Þ; ð14Þ

where the coefficients Sm
k,n are computed using the following

recurrent formulae (Park et al., 2009):

Smþ1
q;n ¼

n

m� qþ 1

� �1=2

sinð�ÞSm
q;n�1 þ

m� nþ 1

m� qþ 1

� �1=2

cosð�ÞSm
q;n;

Smþ1
q;0 ¼

mþ 1

m� qþ 1

� �1=2

cosð�ÞSm
q;0;

Smþ1
mþ1;n ¼

n

mþ 1

� �1=2

cosð�ÞSm
m;n�1 �

m� nþ 1

mþ 1

� �1=2

sinð�ÞSm
m;n;

Smþ1
mþ1;0 ¼ � sinð�ÞSm

m;0: ð15Þ

The key idea that allows the generalization of these formulae

to a three-dimensional decomposition is that we can factorize

a rotation in three-dimensional space into three independent

in-plane rotations about three different axes and then rotate

each two-dimensional decomposition using (14). Let us

consider the following three-dimensional decomposition:

f ðx; y; zÞ ¼
PN
n¼0

 nðx; �Þ
PN�n

m¼0

PN�m�n

l¼0

f̂fn;m;l mðy; �Þ lðz; �Þ: ð16Þ

If we rotate this decomposition about the x axis, this rotation

will be equivalent to N rotations of different two-dimensional

decompositions in the yz plane,

fnðy; zÞ ¼
PN�n

m¼0

PN�m�n

l¼0

f̂fn;m;l mðy; �Þ lðz; �Þ: ð17Þ

This observation means that in order to perform such a

rotation, we need to recompute a rank 3 tensor of coefficients

f̂fn;m;l slice by slice N times using (14). Fig. 4 illustrates three

subsequent rotations of the tensor f̂fn;m;l. Each rotation of the

coefficients in one plane corresponds to a multiplication of

these coefficients by a rotation matrix. Therefore, a three-

dimensional rotation defined with three Euler angles is

equivalent to three sequential rotations of coefficients in three

planes.

2.6. Transition from the Hermite to the Fourier basis

In order to perform a fast convolution as in (5), we convert

the decomposition coefficients from the Hermite basis into the

Fourier basis. This allows use of the fast convolution algorithm

based on the Fourier convolution theorem, which was first

introduced in protein–protein docking studies (Katchalski-

Katzir et al., 1992; Gabb et al., 1997) and then also applied

to EDM fitting (Chacón & Wriggers, 2002; Wriggers, 2010;

Siebert & Navaza, 2009). The key idea of this algorithm is to

compute the Fourier transform of the values of a scoring

function on a grid, CCF(r, t) =
R

f ðr; xÞgðr; x� tÞ dx, using the

convolution theorem

Fðf � gÞ ¼ Fðf ÞFðgÞ; ð18Þ

i.e. by multiplying the complex-conjugated coefficients of the

Fourier transform of the protein electron density with the

coefficients of the Fourier transform of the EDM. We then

obtain CCF(r, t) by taking the inverse Fourier transform of

Fðf � gÞ,
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Figure 4
Sequential rotations of coefficients f̂fn;m;l about different axes. The rotated layer is shown with solid cubes; other coefficients are shown with dashed cubes.
To perform the complete rotation of the decomposition about one axis, we rotate each layer of coefficients about the corresponding axis in the coefficient
space.



CCFðr; tÞ ¼ IFT½Fðf ÞFðgÞ�: ð19Þ

Now we explain how we convert the decomposition coeffi-

cients from the Hermite basis into the Fourier basis. Consider

the decomposition of a function f(r) in the three-dimensional

Hermite basis with decomposition coefficients f̂fi;j;k (9). The

orthogonal Hermite functions are the eigenfunctions of the

continuous Fourier transform,R
 nðx; �Þ expð�2�i!xÞ dx ¼ ð�iÞn n !;

2�

�

� �
� ~  nð!; �Þ;

ð20Þ

where ! is the frequency in reciprocal space. In order to

compute Fourier coefficients of f(r) to order M, we first

compute the Fourier transforms of the basis functions  i(x; �),

 j(y; �) and  k(z; �) using (20). We then substitute these

coefficients into (9) and obtain the following expression for
~ffl;m;n, the Fourier coefficients of f(r):

~ffl;m;n ¼
1

LxLyLz

PN
i¼0

PN�i

j¼0

PN�i�j

k¼0

f̂fi;j;k
~  i

l

Lx

; �

� �
~  j

m

Ly

; �

 !
~  k

n

Lz

; �

� �
:

ð21Þ

These values can be computed in O(M3N + M2N2 + M3N)

steps (see Appendix B).

2.7. Implementation details and running time

We chose to demonstrate the potential of the Hermite basis

by implementing the rigid-body fitting of an atomistic struc-

ture of a protein in an electron-density map of low resolution.

The HermiteFit algorithm was implemented using the C++

programming language and compiled using g++ with -O3

optimization. The running times of the tested algorithms were

measured on a single core of an Intel Xeon CPU X5650

@2.67 GHz processor with 24 GB of RAM on a Linux 64-bit

operating system.

Our fitting method typically samples some 1010 rigid-body

configurations. Therefore, it is practical to group its fitting

solutions into clusters. There are multiple ways to measure

the similarity between rigid-body solutions. For example, the

pairwise root-mean-square deviation (r.m.s.d.) is a fast and

well accepted similarity measure. Thus, we clustered the fitting

solutions using the rigid-body clustering algorithm imple-

mented with the RigidRMSD library (Popov & Grudinin,

2014) as follows. Firstly, the fitting solution with the best score

(yet unassigned to any cluster) is taken as the seed for the new

cluster. Secondly, the pairwise r.m.s.d.s between the seed and

all other predictions are measured and predictions with an

r.m.s.d. lower than a certain threshold are put into the cluster.

Finally, these two steps are iterated until all fitting predictions

are assigned to corresponding clusters.

3. Analysis

This section provides analytical and numerical analysis of the

density encoding in the Hermite basis. More specifically, we

provide the choice of optimal model parameters and assess the

quality of encoding.

3.1. Choice of parameters of the method

Orthogonal Hermite functions (6) decay exponentially after

a certain distance and thus can encode information only within

some interval. We can estimate this interval using the formula

for the last root of a Hermite polynomial, �1,N ’ (1 + 2N)1/2/�
(Ricci, 1995), which gives an approximation for the half-size of

the bounding box that we can successfully encode:

Lbox=2 <�
ð1þ 2NÞ

1=2

�
: ð22Þ

On the other hand, orthogonal Hermite functions are the

eigenfunctions of the continuous Fourier transform (20).
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Figure 5
Absolute values of the two matrices F(1) and F(2) that give the transfer matrix as their product (35). These matrices are computed with scaling parameter
� = 0.55 and input box size Lbox = 23.0 Å, which mimics the first fitting example shown below. Left, F(1), the scaled Fourier transform of a one-
dimensional Hermite function, as given by (36). Right, F(2), the scaled Fourier series of a one-dimensional Hermite function, as given by (37). The dashed
blue line highlights the maximum encoded frequency according to (23). The solid black line in the right plot shows the maximum Hermite decomposition
order Nmax at which the two matrices are still identical (22).



Therefore, a Hermite decomposition of order N can encode

only a certain interval of frequencies. Using the same

approximation as in the case of the real-space interval, we

obtain the following equation for the maximum encoding

frequency:

!max ¼
�

2�
ð2N þ 1Þ1=2: ð23Þ

In the case of the Fourier series expansion in the interval

(0, Lbox), we can use the same estimation for the maximum

encoding index Mmax by setting Mmax = 2Lbox!max. The reso-

lution " of an X-ray electron-density map is defined by the size

of the reciprocal lattice as " = 1/(2!max) or, equivalently, " =

Lbox/Mmax. Therefore, using the resolution of the map " and

the order of the Fourier series expansion M, we can estimate

the lower bound on the Hermite scaling parameter � required
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Figure 6
Nine examples of the absolute values of the transfer T matrices for three different values of � and three different values of the Hermite decomposition
order N. The number of Fourier coefficients is M = 60, and the input box size is Lbox = 23.0 Å, which mimics the first fitting example shown below. The
Hermite decomposition orders are N 2 {15, 20, 30} and the parameter � takes values of 0.3, 0.55 and 1.0 Å�1. The first column corresponds to a relative
�Lbox value of 6.9, the middle column corresponds to a relative �Lbox value of 12.6 and the right column to a relative �Lbox value of 23. Notably, at low
values of � the transfer matrix encodes only small-order reflections. The index of the last reflex can be estimated from (23) as kmax = (2N + 1)1/2�Lbox/2�.
On increasing the value of �, the number of encoded frequencies rises. However, at the same time the quality of the encoding of low frequencies worsens,
as can be seen from the values on the diagonal.



to encode all the reflections of the electron-density diffraction

pattern to be

� >�
�

maxð";Lbox=MÞð2N þ 1Þ1=2
: ð24Þ

Here, we bounded the actual resolution by Lbox/M, because

this will be the limit allowed by the finite Fourier series of

order M.

The two inequalities (22) and (24) give approximate bounds

on the scaling parameter �, provided that we know the size of

the box Lbox containing protein density and the resolution of

the map ". Using these inequalities, we obtain the following

relationship between the parameters � and N:

�

ð2N þ 1Þ1=2 maxð";Lbox=MÞ
<
� �<� 2

ð1þ 2NÞ1=2

Lbox

; ð25Þ

which is valid for sufficiently large values of N. Nonetheless,

we can use the following empirical estimation for the optimal

value of � at any N:

�opt ’
�

2 maxð";Lbox=MÞð2N þ 1Þ1=2
þ
ð1þ 2NÞ

1=2

Lbox

: ð26Þ

Using dimensionless relative parameters �Lbox and Lbox/", we

may rewrite the previous expression as

�Lbox ’
�minðLbox=";MÞ

2ð2N þ 1Þ1=2
þ ð1þ 2NÞ

1=2: ð27Þ

If at a given expansion order N there is no such parameter �
that satisfies inequality (25), then the protein representation

might involve information loss. Therefore, we can estimate the

minimum order Nmin of the Hermite expansion that allows this

inequality to have solutions to be

Nmin ’
�

4
min

Lbox

"
;M

� �
: ð28Þ

The validity of the provided estimates and the graphical

representation of the real-space and reciprocal-space bounds

on the parameter � will be demonstrated in the following

sections.

The maximum order of the Fourier expansion Mmax can be

estimated from the resolution and the size of the density map

as " = Lbox/Mmax. However, when finding the global maximum

of the cross-correlation function, we need to sample the space

of possible translations of a protein with respect to the EDM

with a step several times finer than the EDM resolution ".
In protein crystallography, it is common practice to set the

sampling step size to "/3 (Afonine & Urzhumtsev, 2004). In

principle, we can use the same reasoning in choosing the

optimal number of rotations Nrot. When using spherical

harmonics, the angular search step usually equals the resolu-

tion of the basis, 2�/N (Garzón et al., 2007). In the case of the

Hermite basis, we propose use of the same criterion.

3.2. The transfer matrix

Below, we describe an analytical model of encoding by the

Hermite basis for the one-dimensional case. Suppose we have

a function f(x) that describes the electron density of a

nonperiodic object. Without loss of generality, we assume that

this function is defined in a one-dimensional interval of

(�Lbox/2; +Lbox/2). This function has the following decom-

position into Fourier series:

~ff exact
k ¼

1

Lbox

RþLbox=2

�Lbox=2

f ðxÞ expð�2�ikx=LboxÞ dx: ð29Þ

We will refer to Fourier coefficients obtained using this

expression as exact. The original function is then recovered by

the inverse Fourier transform:

f ðxÞ ¼
Pþ1

k¼�1

~ff exact
k expð2�ikx=LboxÞ: ð30Þ

On the other hand, our algorithm computes approximate

Fourier coefficients using the Hermite-to-Fourier transform:

~ff approx
k ¼

1

Lbox

PN
n¼0

f̂fn
~  n

k

Lbox

; �

� �
: ð31Þ

Assuming that the function f(x) is zero outside the bounding

interval, Hermite coefficients f̂fn can be written as the finite

integral

f̂fn ¼
RþLbox=2

�Lbox=2

f ðxÞ nðx; �Þ dx: ð32Þ

Now, we can express the approximate Fourier coefficients as a

linear combination of the exact ones:

~ff approx
k ¼

Pþ1
l¼�1

Tk;l
~ff exact
l ; ð33Þ

where the transfer matrix Tk,l is given by

Tk;l ¼
1

Lbox

PN
n¼0

~  nðk; �Þ
RþLbox=2

�Lbox=2

 nðx; �Þ expð2�ilx=LboxÞ dx:

ð34Þ

The transfer matrix acts as a linear filter in reciprocal space

and demonstrates how the input function is distorted by the

finite size N of the Hermite basis. We should note that,

generally, its values are complex numbers.

This matrix can also be seen as a product of two matrices,

T ¼ Fð1ÞFð2Þ; ð35Þ

where the first matrix is a scaled Fourier transform of the basis

functions,

F
ð1Þ
kn ¼

~  nðk; �Þ=ðLboxÞ
1=2; ð36Þ

and the second matrix is a scaled Fourier series of the basis

functions,

F
ð2Þ
nl ¼

RþLbox=2

�Lbox=2

 nðx; �Þ expð2�ilx=LboxÞ dx=ðLboxÞ
1=2: ð37Þ

Fig. 5 shows the absolute values of the matrices F(1) and F(2)

computed with � = 0.55 and Lbox = 23 Å. The values of the

Fourier series F(2) were computed numerically using adaptive

quadrature. The dashed blue line shows the maximum
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encoding frequency !max, according to (23), and bounds the

encoding region. The solid black line on the right plot

demonstrates the maximum order of the Hermite expansion

(22), after which the Fourier series mainly encodes the

frequencies near !max. This is because in a finite interval

(�Lbox/2, +Lbox/2) high-order Hermite basis functions become

orthogonal to low-order Fourier basis functions.

Fig. 6 shows several examples of the absolute values of the

transfer-matrix components for three different values of the

Hermite scaling parameter � and three values of the Hermite

decomposition order N. The size of the transfer matrix was

limited to 60 � 60 and the box size Lbox was set to 23 Å. The

ideal transfer matrix should be identity, which is only the case

at N!1, as we demonstrate below. We see, however, that the

transfer matrix at small values of � encodes only low-order

reflections. The index of the last encoded reflex can be esti-

mated from (23) as kmax = (2N + 1)1/2�Lbox/(2�). With the

increase in order N and parameter �, the number of encoded

frequencies rises. At the same time, increasing the scaling

parameter � makes the quality of encoding of all of the

frequencies worse, as we see in the right column. Therefore, it

is very important to tune the value of � according to the class

of input functions, such that the quality of encoding becomes

optimal. Below, we will assess encoding quality by means of

the crystallographic R factor.

3.3. Asymptotic behaviour of the transfer matrix

Here, we demonstrate that the transfer matrix asymptoti-

cally achieves the Kronecker delta function at N!1. Recall

Mehler’s formula (Mehler, 1866):

PN
n¼0

un nðxÞ nðyÞ ¼
1

½�ð1� u2Þ�
1=2

ð38Þ

� exp �
1� u

1þ u

ðxþ yÞ
2

4
�

1þ u

1� u

ðx� yÞ
2

4

� �
:

If we rewrite the transfer matrix in the following way,

Tk;l ¼
1

Lbox

RþLbox=2

�Lbox=2

dx
PN
n¼0

ð�iÞ
n n

k

Lbox

;
2�

�

� �
� expð2�ilx=LboxÞ nðx; �Þ; ð39Þ

and use the fact that

 nðx; �Þ � �1=2 nð�xÞ; ð40Þ

we see that we can use Mehler’s formula to compute the limit

lim
N!1

PN
n¼0

ð�iÞn n

k

Lbox

;
2�

�

� �
 n

l

Lbox

; �

� �
: ð41Þ

After a simple derivation, we obtain the final result,

lim
N!1

Tk;l ¼
1

Lbox

RþLbox=2

�Lbox=2

expð2�ilx=LboxÞ expð�2�ikx=LboxÞ dx;

ð42Þ

which is exactly the Kronecker delta function.

3.4. Encoding quality

There are several ways to evaluate the quality of a model

encoding with the subsequent reconstruction. For example, in

the optimal control theory (Boyd, 1991), the quality of a linear

filter is estimated using a certain norm of the transfer matrix.

However, in crystallography the most used quality criterion is

the crystallographic R factor (Stout & Jensen, 1968),

R ¼

P
l

j ~FFexact
l j � j ~FFmod

l j
�� ��P

l

j ~FFexact
l j

; ð43Þ

where F exact and F mod are the exact Fourier coefficients of a

molecule and the coefficients computed from the Hermite

coefficients, respectively. This quantity is a widely used

measure of the agreement between a crystallographic model

and the corresponding experimental X-ray diffraction data. In
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Figure 7
Analytical R factors in one dimension as a function of Hermite decomposition order N and scaling parameter � computed at three different resolutions.
The input signal is modelled as a sum of Gaussians (10) with a variance of �/21/2 equispaced at a distance �. The number of Fourier coefficients is M = 30
and the input box size is Lbox = 23.0 Å. These values were chosen to mimic the 1akg peptide decomposition. The estimate of the optimal parameter � (26)
is plotted as a red dashed line. The real-space bound on the optimal parameter � (22) is shown as an orange dashed line. The reciprocal-space bound on
the optimal parameter � (24) is shown as a blue dashed line. Left, the Gaussian parameter � = 0.2 Å, corresponding to an absolute input signal resolution
of " = 0.31 Å and a relative resolution "/Lbox = 0.014. However, in this case the actual absolute resolution is cut at Lbox/M = 0.77 Å, which corresponds to
a relative resolution of 0.033. Middle, the Gaussian parameter � = 1.0 Å, corresponding to an absolute input signal resolution of " = 1.57 Å and a relative
resolution "/Lbox = 0.068. Right, the Gaussian parameter � = 5.0 Å, corresponding to an absolute input signal resolution of " = 7.85 Å and a relative
resolution "/Lbox = 0.34.



the case of an ideal electron-density encoding, the R factor is

equal to zero. In protein crystallography, models with R

factors of less than 0.2 are regarded as good when working at a

medium resolution.

The equations for the transfer matrix allow estimation of

the R factor for certain classes of electron-density distribu-

tions. As described above (10), we use the Gaussian distri-

bution to model the electron density of an atom. Exact Fourier

coefficients of a molecule with Natoms atoms at positions ri are

then given as

~ff
exact

l;m;nðsÞ ¼ �
3�

3
2
PNatoms

i¼1

expð��2�2s2
lmnÞ expð�2i�rislmnÞ; ð44Þ

where sl,m,n is the wavevector and sl,m,n = (l/Lx, m/Ly, n/Lz),

where Lx, Ly and Lz are the dimensions of the bounding box

along the corresponding axes. Similarly, one-dimensional

exact Fourier coefficients of the Gaussian function are given as

~ff
exact

l ¼ ��
1
2
PNatoms

i¼1

expð��2l2=L2
boxÞ expð�2i�ril=LboxÞ: ð45Þ

To see how the Hermite basis encodes Gaussian densities with

various level of detail, we built models of the electron-density

map with different parameters �. The width of the Gaussian

determines the resolution of the density map according to

" ¼
��

2
: ð46Þ

The derivation of this formula follows the one well known in

crystallography which describes the extinction of diffraction

reflections. For the sake of completeness, we provide its

derivation in Appendix C.

To estimate the R factor for certain model parameters, we

assume that the input electron density is given as a sum of

Gaussians with variance of �/21/2 equispaced at a distance �.

Fig. 7 shows analytical R factors in one dimension computed

using (33) and (45) as a function of the Hermite decomposi-

tion order N and the scaling parameter �. We bounded the

input and output frequencies by M = 30 Fourier coefficients.

The size of the input interval Lbox is set to 23.0 Å to mimic the

�-conotoxin PnIB peptide (PDB entry 1akg) decomposition

used in the fitting example below. We should stress that owing

to the properties of the Hermite functions, the whole model is

scale-invariant. More precisely, if we keep the product �Lbox

constant then the relative shape of the Hermite basis functions

would not change. Also, if we scale Lbox and � simultaneously

then the value of the R factor is unchanged. Therefore, it is

useful to provide relative resolutions computed as "/Lbox.

Fig. 7 (left) shows R factors for the Gaussian parameter � =

0.2 Å corresponding to an absolute input signal resolution of "
= 0.31 Å and a relative resolution "/Lbox = 0.014. However, in

this case the actual absolute resolution is cut at Lbox/M =

0.77 Å, which corresponds to a relative resolution of 0.033.

Fig. 7 (middle) shows R factors computed using the Gaussian

parameter � = 1.0 Å corresponding to an absolute input signal

resolution of " = 1.57 Å and a relative resolution "/Lbox =

0.068. Fig. 7 (right) shows R factors computed using the

Gaussian parameter � = 5.0 Å corresponding to an absolute

input signal resolution of " = 7.85 Å and a relative resolution

"/Lbox = 0.34. The estimate of the optimal parameter � (26)

is plotted as a red dashed line. The real-space bound on the

optimal parameter � (22) is shown as an orange dashed line.

The reciprocal-space bound on the optimal parameter � (24)

is shown as a blue dashed line. We see that on lowering the

resolution of the input signal the R factors decrease, as would

be expected from general considerations. We can also see that

the lower (22) and the upper (24) bounds on the optimal

scaling parameter � follow the isolines of the R-factor map.

Therefore, their mean given by (22) provides a reasonable

estimation of the optimal value of �.

Fig. 8 shows R factors as a function of input signal resolution

" for three different Hermite decomposition orders N: 15, 20

and 30. R factors were estimated in the same way as in the

previous case. More precisely, we assumed the same shape of

the input electron density and then used (33) and (45) to

compute the analytical R factors. For these plots, we computed

the optimal scaling parameter � using (22). The parameter

Lbox and the size of the transfer matrix M were constant and

were equal to 23 Å and 30, respectively. As in the previous

figure, these values are chosen to mimic the �-conotoxin PnIB

peptide decomposition used in the fitting example below. The

scale of the top horizontal axis gives the absolute resolution

for Lbox = 23 Å. The scale of the bottom horizontal axis gives

the relative resolution. In order to compute the absolute

resolution, its values need to be multiplied by the chosen value

of Lbox. As expected, the values of the R factors diminish as

the resolution becomes lower. This is because at low resolu-

tions low-frequency columns of the transfer matrix become

more important. In the limiting cases of zero and infinite

resolutions, the R factor can be computed directly from the

transfer matrix as a certain norm of T � I. For the infinite

resolution limit, it is given as the L1 norm of the central
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Figure 8
Analytical R factors in one and three dimensions as a function of the
relative resolution "/Lbox. The absolute resolution at box size Lbox = 23 Å
is shown on the top horizontal axis. Plots for three different Hermite
expansions orders are shown; N 2 {15, 20, 30}. The parameters Lbox and M
were constant and were 23 Å and 30, correspondingly. The scaling
parameter � was estimated using (26).



column of the matrix T � I. For the zero resolution limit, the

R factor is given by the entry-wise L1 norm of T � I, R =P
i;j jTi;j � �i;jj. Fig. 8 also shows an estimation of R factors for

the three-dimensional case. It is based on the assumption that

Hermite decomposition encoding in three dimensions behaves

similarly to the one-dimensional case, with the number of

coefficients scaled as N1D = N3D
1/3.

4. Results and discussion

We tested and verified our algorithm using two examples of

different difficulty. The first example is the small polypeptide

�-conotoxin PnIB. We generated the EDM for this example

from the coordinates of the polypeptide. The second example

is the fitting the GroEL domains into the electron-density map

of the GroEL complex.

4.1. a-Conotoxin PnIB

Firstly, we explored the relationship between the encoding

quality and the quality of the fitting. For this purpose, we

chose the small 16-residue polypeptide �-conotoxin PnIB. We

downloaded the X-ray crystal structure of �-conotoxin PnIB

(PDB code 1akg; Hu et al., 1997) from the PDB (Berman et al.,

2000) and simulated the electron-density map (2mFo � DFc)

using the Uppsala electron-density server (Kleywegt et al.,

2004) with resolution " = 1.1 Å. We computed the protein

density according to (10) with the Gaussian width � = 1.0 Å

using only the non-H atoms of the standard amino acids. We

rotated the initial 1akg structure by arbitrarily chosen Euler

angles of ’ = 76	, � = 234	 and  = 56	 and used it as the input

for the fitting workflow. We used Nrot = 500 (corresponding to

an angular step of 36	) rotations represented with uniformly

distributed Euler angles spanning the space 2� � � � 2�. The

order of the Hermite expansion was set to N = 15, which is the

minimum expansion order allowed at this resolution according

to (28). The order of the Fourier expansion was twice the

order of the Hermite expansion: M = 30 for each dimension.

To see how the encoding quality influences the fitting

algorithm, we studied the dependence of the decomposition

on the scaling parameter �. We chose a range of � parameters

between 0.05 and 2.0. For each �, we computed the best fitting

score along with the average fitting score. Fitting results are

shown in Fig. 9. We see that by choosing a small � we neglect

the details of the protein structure (Fig. 9a) and therefore we

cannot discriminate between different orientations of the

protein (the maximum score for � = 0.05 is very close to the

average score). When choosing a sufficiently large �, we obtain

satisfactory discriminative power to find the near-native

position of the protein (Figs. 9c and 9d). We also see that, for

example for � = 0.5, the difference between the maximum and

the average score is much larger than in the case of � = 0.05.

Also, when we take too large a � we cannot encode the whole

protein (Fig. 9e). The red dashed line in Fig. 9 shows R factors

computed with (43). We see that the choice of the parameter �
influences the R factors and thus determines the quality of the
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Figure 9
Test of the fitting algorithm on an artificially generated EDM for the
�-conotoxin PnIB (PDB entry 1akg). Here, we plotted the dependence of
four parameters, the maximum score, the average score, the score of the
near-native conformation and the crystallographic R factor, on the scaling
parameter �. The isosurface of the Hermite decomposition at protein
model density equal to (�max + �min)/2 and several values of � are shown
in subplots A (� = 0.05), B (� = 0.15), C (� = 0.3), D (� = 0.55) and E (� =
2.0).

Figure 10
Result of fitting chain A of the GroEL–GroES X-ray structure (PDB
entry 1aon) to the GroEL complex electron-density map (EMD-2001).
Two heptameric rings are shown in different colours. The average r.m.s.d.
measured using the C� atoms between the two closest chains in the fitted
structure and the flexibly refined structure provided by the authors of the
EDM (PDB entry 4aau) is 5.35 Å.



fitting. Notably, the minimum of the R-factor curve corre-

sponds to the maximum of the fitting score.

Owing to the strong influence of the scaling parameter � on

the discriminating power of the algorithm, we estimated its

optimal value to gain the maximum separation between the

score of the correct pose and the average score. Provided that

the box that contains all of the rotations of the peptide has the

size Lbox = 23 Å and setting the resolution of the EDM " =

1.1 Å, (26) gives an estimate of the optimal value of the scaling

parameter: �opt ’ 0.50. Fig. 9 shows that this estimation

corresponds to the best discrimination between the near-

native and all other structures, which can be deduced from the

maximum separation between the score of the prediction and

the average score. The r.m.s.d. between the prediction and the

solution at this value of � is 1.03 Å. We should note that the

r.m.s.d can be decreased by taking a finer angular search step.

4.2. GroEL complex

Here, we demonstrate that our approach gives essentially

the same results as other programs, provided that the scoring

function is the same (LCCF in this case). For this purpose, we

use a classical test for a fitting algorithm: the GroEL complex

map. We downloaded the EDM of the GroEL complex from

the Electron Microscopy Data Bank (EMDB; code EMD-

2001) with a resolution of 8.5 Å. We then downloaded the

crystal structure of the GroEL subunits from the PDB data-

base. We used the GroEL–GroES complex structure (PDB

entry 1aon; Xu et al., 1997), from which we extracted chain A,

centred it and arbitrarily rotated it to exclude any bias. We

chose the sampling grid size according to the resolution and

the size of the EDM. The EDM was first padded with zeros

and then transformed to the Fourier basis using the FFT

algorithm. The number of coefficients in the Fourier decom-

position M was equal to 105 � 107 � 119. The angular search

step was set to 30	. We used a Hermite expansion order of N =

15, which is larger than the minimum expansion order allowed

at this resolution, Nmin ’ 9 (see equation 28). We sampled the

rotations using the spiral algorithm (Saff & Kuijlaars, 1997),

which generates an equispaced distribution of points on a

sphere. Unlike in the previous example, owing to the lower

resolution of the GroEL EDM, here we fitted Laplacian-

filtered protein density into the Laplacian-filtered EDM.

After the six-dimensional exhaustive search, we clustered

the solutions using a clustering threshold of 10 Å and kept

the top 14 poses. All 14 poses corresponded to individual

chains of the complex, which is comprised of two heptameric

rings. Fig. 10 shows the results of the fitting. We compared the

fitted model with the model provided by the authors of the

EDM (PDB entry 4aau; Clare et al., 2012). The average r.m.s.d.

between the chains owing to the flexible deformations

measured using C� atoms was 3.0 Å. More precisely, we

superposed the corresponding chains of both models using

rigid-body transformations and then measured the r.m.s.d.

between them. Overall, the average r.m.s.d. between C� atoms

was 5.35 Å. This includes both the discrepancy between

corresponding chains in the assembly arising from flexible

deformations and the rigid-body misfit. The average distance

between the centres of mass of the corresponding chains was

2.64 Å (Table 3).

4.3. Runtime of Hermite- to Fourier-space transition

The use of the fast Fourier transform has been an inevitable

step in every fitting algorithm until now. Instead, we intro-

duced a basis from which we can transform a decomposition

into the Fourier basis avoiding evaluation of the FFT on a grid.

When the grid becomes large, the asymptotic complexity of

our algorithm becomes O(M3N) (see equation 21). It is

comparable to the complexity of the fast Fourier transform
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Table 2
Comparison of the HermiteFit algorithm with the colores and ADP_EM
algorithms.

The comparison criteria were chosen to be the total running time and the
running time per point of search space

Algorithm
No. of rotation-
space points

No. of translation-
space points

Runtime
(s)

Time per point
(�10�7 s)

ADP_EM 16384 23186 139 3.6
colores 4416 1336965 1454 2.5
HermiteFit 4416 1336965 917 1.5

Table 3
Comparison of the models obtained using the HermiteFit, colores and
ADP_EM algorithms with the model obtained by the authors of the
electron-density map (PDB entry 4aau).

For each pair of models, the r.m.s.d. was measured using the C� atoms and the
centres of mass of the corresponding chains and was then averaged over all of
the chains comprising the assembly.

Algorithm R.m.s.d., C� (Å) R.m.s.d., centres of mass (Å)

ADP_EM 4.61 2.29
colores 5.42 2.52
HermiteFit 5.35 2.64

Figure 11
Running times of the Hermite-to-Fourier space transition performed
using our algorithm and the FFT algorithm on a cubic grid of M�M�M
as a function of the Fourier expansion order M. We used the FFTW3
library (Frigo & Johnson, 2005) with the double-precision real discrete
Fourier transform using the flag FFTW_ESTIMATE to measure the
speed of the FFT. The order of the Hermite expansion was N = 15.



algorithm, O(M3logM). Intuitively, at large orders of the

Fourier expansion M our algorithm should be faster compared

with the FFT. Thus, we conducted a numerical experiment to

compare the actual running times. Fig. 11 shows the time

needed to compute the FFT on a cubic grid of size M and the

time needed to transform a Hermite expansion of order N = 15

to the same Fourier grid. We can see that, generally, at large

values of M, M >
 100, the transition from Hermite space into

Fourier space is faster compared with the speed of the FFT.

Also, the timing of the transition grows evenly with respect to

M in contrast to the timing of the FFT. One has to take into

account that we compared our algorithm with the highly

optimized FFTW3 library (Frigo & Johnson, 2005). It is

probable that additional optimization of HermiteFit could

improve performance even further. One of the ways to speed

up the transition will be to use the fast Hermite transform

instead of naive matrix multiplication (Leibon et al., 2008).

This implementation will be the subject of future work.

4.4. Comparison with Situs and ADP_EM

We compared the HermiteFit algorithm with two popular

existing fitting methods: the colores program from the Situs

package (Chacón & Wriggers, 2002) and the ADP_EM fitting

tool (Garzón et al., 2007). These two packages represent the

two major approaches to the problem of exhaustive search in

six-dimensional space of rigid-body motions. Colores, a widely

used CCF-based fitting tool, rapidly scans the translational

degrees of freedom using the fast Fourier transform. The

rotations, however, are sampled exhaustively by enumerating

a list of equispaced distributed rotations on a sphere.

ADP_EM choses points in real space, places the atomic

structure there and then rotationally matches it to the EDM

using the fast rotational matching algorithm. The authors of

ADP_EM compared their algorithm with five-dimensional

rotational matching and found that three-dimensional rota-

tional matching works faster in practice (Garzón et al., 2007).

For comparison, we normalized the running times of the

fitting algorithms by the sizes of the search space. For colores

and HermiteFit the size of the search space is equal to the

number of grid cells (M3 for a cubic grid in the HermiteFit

algorithm) multiplied by the number of sampled angles. The

size of the search space of the ADP_EM algorithm is the

number of points in real space times the number of cells of the

angular grid. The latter is built from uniformly sampled Euler

angles on a grid of 2� � � � 2�. The size of the angular grid

is determined by the order Nexp of a spherical harmonics

expansion and equals 4N3
exp. For colores and HermiteFit, we

used an angular search step of 30	. The resolution of the EDM

for colores and HermiteFit was set to 8.5 Å. The Fourier grid

that was used by colores and the HermiteFit algorithm had

dimensions of 105 � 107 � 119. For ADP_EM, we used a

spherical harmonics expansion order of Nexp = 16.

Table 2 shows the normalized times of the complete six-

dimensional search for the three algorithms in the case of

fitting the GroEL subunit into the 8.5 Å resolution GroEL

electron-density map. Judging by the total running time,

ADP_EM has a large advantage over the two other algo-

rithms, which exhaustively search all of the space of possible

translations. However, in terms of running time per search

point, the HermiteFit algorithm is more effective than the

other two. Interestingly, colores spends about half of the total

search time on computation of the Fourier coefficients of the

rotated protein. Therefore, it was very important for us to

speed up this step. Nonetheless, all three tested algorithms

have their own advantages and drawbacks. For example,

ADP_EM can use smart heuristics to reduce the number of

search points in real space. However, its sample points in the

space of rigid-body rotations are distributed non-uniformly. In

particular, rotations near the poles are sampled more densely,

making this sampling scheme less effective (Saff & Kuijlaars,

1997). On the other hand, the HermiteFit algorithm along with

the colores algorithm sample the rotational space nearly

uniformly using the spiral algorithm while the translational

space sampling also remains uniform. We would like to stress

that the absolute runtimes (shown in Table 2) are not very

informative. In particular, they dramatically depend on the

choice of the FFT library, code optimization, the choice of

compiler and compilation options etc. However, this compar-

ison clearly demonstrates that the new approach paves the

way to speed up one of the bottlenecks of fitting methods: the

projection of the rotated structure into the Fourier space.

To assess the fitting quality of the tested methods, we

measured the r.m.s.d.s between the obtained models and the

structure obtained by the authors of the electron-density map

(PDB entry 4aau). Table 3 shows a comparison of the

measured r.m.s.d.s for ADP_EM, colores and HermiteFit. We

used two different criteria for the measurements. Firstly, we

measured the average r.m.s.d. between C� atoms. Secondly, we

measured the average distance between the centres of mass of

the corresponding chains. ADP_EM produced a model with

an r.m.s.d. of 4.61 Å from the solution; the r.m.s.d.s for colores

and HermiteFit were 5.42 and 5.35 Å, respectively. Clearly,

Table 3 demonstrates that the tested algorithms produce equal

quality models. However, the results of ADP_EM are slightly

better, presumably because of the finer rotational sampling.

5. Conclusion

In this paper, we have presented HermiteFit, a new method

that performs an exhaustive search in the six-dimensional

space of rigid-body motions. It uses orthogonal Hermite

functions to encode the electron density and performs the

critical steps of the fitting workflow in Hermite space. As part

of the new method, we developed an algorithm for the rota-

tion of the decomposition in the Hermite basis and an algo-

rithm for the conversion of the Hermite expansion coefficients

into the Fourier basis. By introducing the Hermite decom-

position into the EDM fitting workflow, we inevitably intro-

duced an additional scaling parameter �. For this parameter,

we provided tight bounds and an estimation of the optimal

value that depends only on the properties of the fitting

problem and the desired order of the polynomial decom-

position (equations 25 and 26). Using two examples, we
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demonstrated the validity of these bounds as well as the

sufficiency of the Hermite expansion of order N = 15 to solve

the standard EDM fitting problems. In particular, we derived

a formula for Laplacian-filtered Hermite decomposition and

employed this result to fit a single chain of GroEL into its

electron-density map. Using analytical analysis, we calculated

the crystallographic R factor produced by our method, which

does not depend on the particular density that we encode. This

allowed us to avoid tuning of fitting parameters and provided

a clear understanding of the error sources in the algorithm.

Finally, we compared our algorithm with two widely used

fitting methods: ADP_EM and colores from the Situs package.

The proposed algorithm can be straightforwardly applied

to other problems in structural bioinformatics such as, for

example, protein–protein and protein–ligand docking. It can

also be used for computer vision and three-dimensional

object-recognition problems. The improvement in the speed of

the algorithm may have an impact on flexible protein docking,

flexible EDM fitting and other difficult problems that require a

six-dimensional exhaustive space search as their initial step.

HermiteFit will be made available stand-alone at http://

nano-d.inrialpes.fr/software/HermiteFit and as a plugin for the

SAMSON software platform, and is available upon request

from the authors.

APPENDIX A
Shifted Gaussian expansion

Here, we provide the derivation of the expansion coefficients

of a shifted Gaussian of the form

gðrÞ ¼ exp �
jr� r0j

2

�2

� �
ð47Þ

into the orthogonal Hermite basis. The well known property of

this basis (as well as of any orthogonal basis) is the following:

if f ðx; y; zÞ ¼ f ð1ÞðxÞf ð2ÞðyÞf ð3ÞðzÞ

and f ðkÞðtÞ ¼
PN
i¼0

f̂f
ðkÞ
i  iðt; �Þ

then

f̂fi;j;k ¼ f̂f
ð1Þ
i f̂f
ð2Þ
j f̂f
ð3Þ
k : ð48Þ

Firstly, we derive the decomposition of a one-dimensional

Gaussian into the one-dimensional orthogonal Hermite basis.

Then, using property (48), we obtain the decomposition of

a three-dimensional Gaussian into the three-dimensional

orthogonal Hermite basis. More specifically, the one-

dimensional Gaussian function is

gðxÞ ¼ exp �
ðx� �Þ2

�2

� �
: ð49Þ

Its decomposition coefficients are

ĝgnð�; �; �Þ ¼
R

gðxÞ nðx; �Þ dx

¼

n!�1=2 exp �
�2

�2
1�

1

�2	2

� �� �
ð2nn!�1=2Þ

1=2

Pðn=2Þ

m¼0

ð�1Þm

m!ðn� 2mÞ!
ð50Þ

�
R

exp �	2 x�
�

�2	2

� �2
" #

2� x�
�

�2	2

� �
þ

2��

�2	2

� �n�2m

dx

where 	2 = (�2/2) + (1/�2). From now on, we will, for brevity,

write ĝgn instead of ĝgnð�; �; �Þ. Changing the variables t = x �

(�/�2	2) and denoting a = �/�2	2, we obtain

ĝgn ¼

n!�1=2 exp �
�2

�2
1�

1

	2

� �� �
ð2nn!�1=2Þ

1=2

Pðn=2Þ

m¼0

ð�1Þmð2�Þn�2m

m!ðn� 2mÞ!

�
R

expð�	2t2Þðt þ aÞ
n�2m dx: ð51Þ

Next, we decompose the sum (t + a)k using Newton’s formula,

ðt þ aÞk ¼
Pk
i¼0

k

i

� �
tiak�i: ð52Þ

Thus, the integral in (51) will readR
expð�	2t2Þðt þ aÞ

n�2m dx

¼
Pn�2m

i¼0;i-even

ðn� 2mÞ!

2i i=2ð Þ!ðn� 2m� iÞ!
�1=2	�1�ian�2m�i: ð53Þ

Substituting it into the formula for ĝngn and denoting
Pn�2m

i¼0;i-even

=
P½ðn�2mÞ=2�

l¼0 (i = 2l), we obtain the following expression for the

coefficients,

ĝgnð�; �; �Þ ¼ exp �
�2

�2
1�

1

�2	2

� �� �
n!�1=2�

2n

� �1=2

�
Pðn=2Þ

m¼0

P½ðn�2mÞ=2�

l¼0

ð�1Þm2n�2m�2l�n�2m

l!ðn� 2m� 2lÞ!m!
	�2nþ4mþ2l�1 �

�2

� �n�2m�2l

:

ð54Þ

Finally, using (48) we obtain a decomposition of the three-

dimensional Gaussian into the three-dimensional Hermite

basis. We should note that in order to avoid the rounding

error, one should begin the summation with the Gaussians that

are located farther from the origin.

APPENDIX B
Fast summation

Here we explain the fast summation in (55),

~ffl;m;n ¼
PN
i¼0

PN�j

j¼0

PN�i�j

k¼0

f̂fi;j;k
~  i;l

~  j;m
~  k;n; ð55Þ

with indices l, m, n 2 (0, M). The summation in this formula

can be performed with less operations than a naive estimation

O(M3N3) suggests. We perform the fast summation by splitting

the equation into three consecutive sums:

gT1
i;j;nT1
i;j;n ¼

PN�i�j

k¼0

f̂fi;j;k
~  k;n; ð56Þ
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gT2
i;m;nT2
i;m;n ¼

PN�i

j¼0

gT1
i;j;nT1
i;j;n

~  j;m; ð57Þ

~ffl;m;n ¼
PN
i¼0

gT2
i;m;nT2
i;m;n

~  i;l: ð58Þ

It is easy to see that the construction of the gT1
i;j;nT1
i;j;n matrix takes

O(MN3) operations, the construction of the gT2
i;m;nT2
i;m;n matrix

takes O(M2N2) operations and the final summation takes

O(M3N) operations. In the common use case (N = 15, M >> N)

the last sum takes much more time than the other two. To

optimize it, we used the Gaussian method to multiply complex

numbers and expressed the whole sum as a generalized matrix

product of three real-valued matrices. To implement these

operations, we used the ATLAS library.

APPENDIX C
Resolution model

To illustrate the connection between the parameter � in the

model of electron density (10) and the resolution of the X-ray

diffraction pattern, we use the simplest model. More precisely,

we model the electron density as the array of Gaussians in a

perfect one-dimensional lattice perpendicular to the incoming

radiation beam. The parameter � then plays the role similar to

the temperature B factor. X-ray diffraction intensity depends

on the angle between the incoming beam and the direction to

the detector � as

I /
R

f ðxÞ exp 2�ix
sin �

�

� �
dx

���� ����2; ð59Þ

where � is the wavelength of the incoming radiation. Using the

model density (10), we obtain

I / ��1=2 exp � �
sin �

�
�

� �2
" #R

�ðxÞ exp 2�ix
sin �

�

� �
dx

�����
�����

2

;

ð60Þ

where �(x) is the sum of delta functions at the atomic posi-

tions. Therefore, the extinction of the diffraction peaks is

proportional to |exp{�[�(sin�/�)�]2}|2, where we neglect the

quadratic factor before the exponential.

According to the definition used in crystallography, reso-

lution is the interplanar distance in real space corresponding

to the last observable peak in reciprocal space. Unfortunately,

the index of the last peak depends on the detector’s noise and

strongly depends on the characteristics of the measurement

device. Therefore, to give a qualitative estimation of the

dependence of resolution on the model parameter �, we

assume that the last observable peak is that whose intensity

decreases approximately by the factor e2. The corresponding

angle is then given by

sin �max ¼
�

��
: ð61Þ

Therefore, the minimum interplanar distance, or the resolu-

tion, is given by Bragg’s law as

" ¼ ��=2: ð62Þ
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